439 research outputs found

    Solar neutrinos and the influence of radiative opacities on solar models

    Get PDF
    Use of new radiative opacities based on the hot Thomas-Fermi model of the atom yields a predicted solar neutrino flux which is still considerably larger than the flux observed in Davis's Cl-37 experiment

    Mesoamerican Reef Spawning Aggregations Help Maintain Fish Population: A Review of Connectivity Research and Priorities for Science Management

    Get PDF
    The life history of most marine organisms includes an obligate period of pelagic larval dispersal. Migration to spawning areas and pelagic dispersal is often well beyond the home range of these organisms. Designing marine protected areas to include a broad range of taxa and their various dispersal patterns is an important and daunting challenge. This paper addresses the issue of connectivity for one set of species in a limited geographic area. We focus on transient spawning reef fish within the Mesoamerican Reef and their connectivity. We divide our scientific review into four sections as follows: (1) ecological characterization of transient multi-species reef fish spawning aggregations, (2) oceanographic and biophysical modeling approaches for understanding connectivity, and (3) validation of models with observations. We conclude that the science behind connectivity is advancing rapidly on many fronts, but there are still large gaps, and it is still largely impossible for managers to apply the results of these studies in specific cases. We further recognize that human and political connectivity may be as important for management as the science behind it. Managers, scientists, fishermen, and politicians can and should embrace connectivity as an important factor in regional fisheries and marine biodiversity management. The collaborative design and implementation of networks of marine reserves that include multi-species spawning aggregation sites, critical nursery habitat, and their connectivity, are likely to provide an important contribution to reversing the decline in fisheries throughout the Gulf of Mexico and Caribbean Region

    Antifungal and antibacterial effects of some acrocarpic mosses

    Get PDF
    In this study, the antifungal and antibacterial effect of 6 different  acrocarpous mosses were tested in vitro aganist 8 different  microorganisms. For the extraction, ethyl alcohol, methyl alcohol, acetone and chloroform were used as solvents. While the highest antimicrobial effect was seen in methyl alcohol extracts, extracts of chloroform showed the lowest level of antimicrobial effect. Grimmia anodon Bruch & Schimp. which is one of the acrocarp mosses used in this study, showed the highest activity in termsof the number of microorganism affected. Tortella tortuosa (Hedw.) Limpr. only has effect on Candida albicans ATCC 16231 strain. All the results were compared with standard antibiotic discs, ketoconazole (50 ìg), ampicillin (10 ìg), eritromycin (15 ìg) and vancomycin (30 ìg).Key words: Moss, acrocarpous, antimicrobial effect

    Investigation of antimicrobial activity of some Turkish pleurocarpic mosses

    Get PDF
    In this study, the antimicrobial activities of different extracts from the five pleurocarpic mosses (Platyhypnidium riparioides (Hedw.) Dixon, Leucodon sciuroides (Hedw.) Schwägr., Hypnum cupressiforme Hedw., Homalothecium sericeum (Hedw.) Br.Eur., and Anomodon viticulosus (Hedw.) Hook & Taylor.) were tested aganist eight bacterial and fungal strains. For the extraction, four different solvents (ethyl alcohol, methyl alcohol, chloroform and acetone) were used. While methanolic extracts of P. riparioides showed the highest antibacterial effect against the Gram-negative bacterium Pseudomonas aeroginosa ATCC 27853, acetone extract of A. viticulosus showed the highest antifungal effect against the fungus Saccharomyces cerevisiae ATCC. All the results were compared with standard antibiotic discs: ketoconazole (50 μg), amphicillin (10 μg), eritromycin (15 μg), penicillin (10 μg) and vancomycin (30 μg).Key words: Moss, pleurocarpic, antimicrobial activity

    Evolution and Nucleosynthesis of Zero Metal Intermediate Mass Stars

    Get PDF
    New stellar models with mass ranging between 4 and 8 Mo, Z=0 and Y=0.23 are presented. The models have been evolved from the pre Main Sequence up to the Asymptotic Giant Branch (AGB). At variance with previous claims, we find that these updated stellar models do experience thermal pulses in the AGB phase. In particular we show that: a) in models with mass larger than 6 Mo, the second dredge up is able to raise the CNO abundance in the envelope enough to allow a "normal" AGB evolution, in the sense that the thermal pulses and the third dredge up settle on; b) in models of lower mass, the efficiency of the CNO cycle in the H-burning shell is controlled by the carbon produced locally via the 3alpha reactions. Nevertheless the He-burning shell becomes thermally unstable after the early AGB. The expansion of the overlying layers induced by these weak He-shell flashes is not sufficient by itself to allow a deep penetration of the convective envelope. However, immediately after that, the maximum luminosity of the He flash is attained and a convective shell systematically forms at the base of the H-rich envelope. The innermost part of this convective shell probably overlaps the underlying C-rich region left by the inter-shell convection during the thermal pulse, so that fresh carbon is dredged up in a "hot" H-rich environment and a H flash occurs. This flash favours the expansion of the outermost layers already started by the weak thermal pulse and a deeper penetration of the convective envelope takes place. Then, the carbon abundance in the envelope rises to a level high enough that the further evolution of these models closely resembles that of more metal rich AGB stars. These stars provide an important source of primary carbon and nitrogen.Comment: 28 pages, 5 tables and 17 figures. Accepted for publication in Ap

    An efficient scheme for numerical simulations of the spin-bath decoherence

    Get PDF
    We demonstrate that the Chebyshev expansion method is a very efficient numerical tool for studying spin-bath decoherence of quantum systems. We consider two typical problems arising in studying decoherence of quantum systems consisting of few coupled spins: (i) determining the pointer states of the system, and (ii) determining the temporal decay of quantum oscillations. As our results demonstrate, for determining the pointer states, the Chebyshev-based scheme is at least a factor of 8 faster than existing algorithms based on the Suzuki-Trotter decomposition. For the problems of second type, the Chebyshev-based approach has been 3--4 times faster than the Suzuki-Trotter-based schemes. This conclusion holds qualitatively for a wide spectrum of systems, with different spin baths and different Hamiltonians.Comment: 8 pages (RevTeX), 3 EPS figure

    Quantum Dynamics of Spin Wave Propagation Through Domain Walls

    Get PDF
    Through numerical solution of the time-dependent Schrodinger equation, we demonstrate that magnetic chains with uniaxial anisotropy support stable structures, separating ferromagnetic domains of opposite magnetization. These structures, domain walls in a quantum system, are shown to remain stable if they interact with a spin wave. We find that a domain wall transmits the longitudinal component of the spin excitations only. Our results suggests that continuous, classical spin models described by LLG equation cannot be used to describe spin wave-domain wall interaction in microscopic magnetic systems

    An Assessment of Dynamical Mass Constraints on Pre-Main Sequence Evolutionary Tracks

    Get PDF
    [abridged] We have assembled a database of stars having both masses determined from measured orbital dynamics and sufficient spectral and photometric information for their placement on a theoretical HR diagram. Our sample consists of 115 low mass (M < 2.0 Msun) stars, 27 pre-main sequence and 88 main sequence. We use a variety of available pre-main sequence evolutionary calculations to test the consistency of predicted stellar masses with dynamically determined masses. Despite substantial improvements in model physics over the past decade, large systematic discrepancies still exist between empirical and theoretically derived masses. For main-sequence stars, all models considered predict masses consistent with dynamical values above 1.2 Msun, some models predict consistent masses at solar or slightly lower masses, and no models predict consistent masses below 0.5 Msun but rather all models systematically under-predict such low masses by 5-20%. The failure at low masses stems from the poor match of most models to the empirical main-sequence below temperatures of 3800 K where molecules become the dominant source of opacity and convection is the dominant mode of energy transport. For the pre-main sequence sample we find similar trends. There is generally good agreement between predicted and dynamical masses above 1.2 Msun for all models. Below 1.2 Msun and down to 0.3 Msun (the lowest mass testable) most evolutionary models systematically under-predict the dynamically determined masses by 10-30% on average with the Lyon group models (e.g. Baraffe et al. 1998) predicting marginally consistent masses *in the mean* though with large scatter.Comment: accepted for publication in ApJ (2004

    Origin of the Canonical Ensemble: Thermalization with Decoherence

    Get PDF
    We solve the time-dependent Schrodinger equation for the combination of a spin system interacting with a spin bath environment. In particular, we focus on the time development of the reduced density matrix of the spin system. Under normal circumstances we show that the environment drives the reduced density matrix to a fully decoherent state, and furthermore the diagonal elements of the reduced density matrix approach those expected for the system in the canonical ensemble. We show one exception to the normal case is if the spin system cannot exchange energy with the spin bath. Our demonstration does not rely on time-averaging of observables nor does it assume that the coupling between system and bath is weak. Our findings show that the canonical ensemble is a state that may result from pure quantum dynamics, suggesting that quantum mechanics may be regarded as the foundation of quantum statistical mechanics.Comment: 12 pages, 4 figures, accepted for publication by J. Phys. Soc. Jp
    corecore